a2 United States Patent

Dieffenderfer et al.

(10) Patent No.:

(45) Date of Patent:

US009317293B2

US 9,317,293 B2
Apr. 19, 2016

(54)

(71)

(72)

(73)

")

@
(22)
(65)

(60)

(1)

(52)

(58)

ESTABLISHING A BRANCH TARGET
INSTRUCTION CACHE (BTIC) ENTRY FOR
SUBROUTINE RETURNS TO REDUCE
EXECUTION PIPELINE BUBBLES, AND
RELATED SYSTEMS, METHODS, AND
COMPUTER-READABLE MEDIA

Applicant: QUALCOMM Incorporated, San
Diego, CA (US)

James Norris Dieffenderfer, Apex, NC
(US); Michael William Morrow,
Wilkes-Barre, PA (US); Michael Scott
Mcllvaine, Raleigh, NC (US); Daren
Eugene Streett, Cary, NC (US); Vimal
K. Reddy, Raleigh, NC (US); Brian
Michael Stempel, Raleigh, NC (US)

QUALCOMM Incorporated, San
Diego, CA (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 553 days.

13/792,335
Mar. 11,2013
Prior Publication Data

US 2014/0149726 Al May 29, 2014

Inventors:

Assignee:

Notice:

Appl. No.:
Filed:

Related U.S. Application Data

Provisional application No. 61/730,717, filed on Nov.
28, 2012.

Int. Cl1.

GO6F 9/38 (2006.01)

GO6F 9/30 (2006.01)

U.S. CL

CPC ... GO6F 9/3808 (2013.01); GOGF 9/30054

(2013.01)
Field of Classification Search
CPC GOGF 9/30054; GOGF 9/3808
See application file for complete search history.

(56)

References Cited

U.S. PATENT DOCUMENTS

5,561,782 A 10/1996 O’Connor
5,623,614 A 4/1997 Van Dyke et al.
6,279,106 Bl 82001 Roberts
7,159,098 B2 1/2007 Henry et al.
7,447,883 B2 11/2008 Vasekin et al.
2005/0172110 Al 8/2005 Hirotsu et al.
2008/0301420 Al 12/2008 Inoue
2009/0210661 Al 8/2009 Alexander et al.

FOREIGN PATENT DOCUMENTS

EP 0468134 A2 1/1992

EP 1868081 Al 12/2007

WO 9114224 Al 9/1991
OTHER PUBLICATIONS

International Search Report and Written Opinion—PCT/US2013/
072372, International Search Authority—Furopean Patent Office,
Feb. 6,2014.

Primary Examiner — Benjamin Geib
(74) Attorney, Agent, or Firm — Gerald P. Joyce, 111

(57) ABSTRACT

Establishing a branch target instruction cache (BTIC) entry
for subroutine returns to reduce pipeline bubbles, and related
systems, methods, and computer-readable media are dis-
closed. In one embodiment, a method of establishing a BTIC
entry includes detecting a subroutine call in an execution
pipeline. In response, at least one instruction fetched sequen-
tial to the subroutine call is written as a branch target instruc-
tionina BTIC entry for a subroutine return. A next instruction
fetch address is calculated, and is written into a next instruc-
tion fetch address field in the BTIC entry. In this manner, the
BTIC may provide correct branch target instruction and next
instruction fetch address data for the subroutine return, even
if the subroutine return is encountered for the first time or the
subroutine is called from different calling locations.

28 Claims, 10 Drawing Sheets

Front-End Cireuit {22)

FE, (38)

Branch Prediction Circuit (46}

1 Link Stack

Input/Qutput
Circuit (14)

FE2 (40)

2 S

‘ Fgs (42}

| 15 (44)

BCL (48)

STIC (50) (28

BTAC (52)

BHT (54)

Registers

<

: 73
Instruction Cache i

{18)

130}
GPR

JE

Pipeline Bubble Reduction Circuit (12)

{32}

Subroutine Call
Data Cache LN Detection Circuit
(18) {56)

BTIC Entry
Establishing
Circuit (58)

Subroutine
Return Detection
Circuit (60)

BTIC Consuming !

3 Link
Cireuit (62) | NV

Register

(36)

~

Execution Pipeline
{20)

§ Execution Unit \
(24) J

Program
Counter
{34}

Processor {10)

US 9,317,293 B2

Sheet 1 of 10

Apr. 19,2016

U.S. Patent

T aundiy

{ve}
ABUNGD
wieddc.id

{01} Jossanoud

H
H
1

-

5]

aun uopsdiun)

18]
auyjedid uonnosxg

{87}
Ei i THE

vz}
HUP UOBNIaXS
BYTeeoTe fgc) un g
(£9) 25313 09 unup || fggjuman | (9] {s1)
SUIUNELOn 4G G uin3ay BuisloeIsy BN Uoeeeg SHIET R1B(
T Jgns Auz e HED BUANCIGNS
N34T Uoionpay aigang aulsdid
AN {o1)
; [Y22 UCI3NAISUY
{tr5) LHd {vvisi
.
{zs}ovid (3%} 104 ey "3
{ov) T34
{os) o {PTIanaD
foe Ty wdng/andu
(G} 1N UONRMID3Id Yauelg (g€ 34 af _

{77) HroaD pu3-UcH

US 9,317,293 B2

Sheet 2 of 10

Apr. 19,2016

U.S. Patent

7 3ingid

®
@
&

{64} 1BIS BUINOIGNG IADN cooonme \,,.\Emﬁm

{94} UOIONIISUL LITDY BUINOIYNG wewd CHEJTSLE
g = FXIIS U

{74} RIS BUINOIGNS e xb,mﬁm &

. &

® o

[y : w

T et S JISUY sl

o

0L~ CHISU =

o

{9} UOIIINJISUY [{ED BUIINCIONT wewn H.Emcm £
9g =y O4JSU

{70} souanbsag uononssul Arejduwsxy

US 9,317,293 B2

¢ 3N
{05} D119 78
_ \.,vwsmE %.,xtmcm Faysuly \

R i
Asuy 7 APV YSIRd youelg

Sheet 3 of 10

Apr. 19,2016

19die] m\\ﬁmﬁm IHBR {29} aunadid jo BDuURLISY
Ed
youesgy / \
/ rd
T+X X T &
HKpasup Xaasuy | TSy @
) &
T4y e LS 0 gl @
U] Xsup TRIsSUp | sy 34
g -
N {e1ang) e e g
TXpisiy asusy | O AUy “34ien o
_ 7/ i
AR 7 o 2
) sgang) 37] ojm
tpsupd N Asur | onsu 1341 3
nasuy F
i
N T - . :
BegysuyTaIsUp | Rasuy | Gaasul | {78} unied BeN
8 L 9 5 v £ 4 T O

U.S. Patent

$3J0AD §O0D J0SSBI04

US 9,317,293 B2

Sheet 4 of 10

Apr. 19,2016

U.S. Patent

Vi 24n8i4

{z1) unoaD
UoIInNpaY
3jgyng suysdid

{05} D1y

KIS U

J35U)

ofiey AISU BN
'y Yuey
/ 86
6 i
4 /e
EA15U} e
R RESH RARARY €34
32 RESTIE B sy | otaasyy 734
B
SRIISUL TR sU QN__EHMQ Tsuy | Sasuj T34
AJgsup (ORsUY ERgsuyl Aasuy | Tasug | Qusup | {ZR) UDisd BGN
5 ¥ £ Z 7 0

531IAD %0 JOSEI00U

{9Rr) auljedid 10 JapuieiudY

safels suipdig

UOINDBX3

6

US 9,317,293 B2

Sheet 5 of 10

Apr. 19,2016

U.S. Patent

{Z1) unsaD

g 84nsi4

UOHINPaY {08} o118
3jggng suysdid
R LAIsUY AISU X psUy
.Y..V.\\\» i
Ll BSULZapRY Uoied dppy Bel
et kE) U 435U SN
OO
, e .m.\x.x..w\\\\ .\\ &
eS| g -disuy | Tagsuy | Sagsuy 7 w
\<\\\\\ < ,. “
335U TIPIsUL | TRUISUL | XS ﬂ.;m@\\..‘, S41SuUi €34
. {aiqana) 8., . “.v_ ing) .
SA3SU] 1ana; T gysuy | TRysuy andl Baysup - Qasyy 734
A3SUY Ti3suy
c (31aand) " EHefolgte .
=43suy tiaand) LRSIt (eaana] LISUE | Sugsu T34
MIsUL B RSy
Esul T AISU] [EUASU] | Tasuy | Lasu) | RasUl | CAsUp | {78) UM N
8 IA g 5 1 £ Z T O

$2(0AD NO0ID JOSSRO0L

{gg) sunpdid 40 JSpUR WY

sadels aupadiyg

UOINJaX3

6

U.S. Patent Apr. 19,2016 Sheet 6 of 10 US 9,317,293 B2

// \'\
o~ - ~
-7 Subroutine call S

~.
~

102m< instruction detected in
“an gxecution pipeline?
o P

~ ./'/

//

Yes

¥

Write at least one seguential instruction fetched
sequential to the subroutine call instruction into a

LOE s . .) .
branch target instruction field in a BTiC entry for a
subroutine return instruction
¥
108 et Calculate a next instruction fetch address
v

Write the next instruction fetch address into a
110 - next instruction fetch address field in the BTIC
entry for the subroutine return instruction

L%

104 comoooeet Continue processing of instructions

Figure 5

U.S. Patent Apr. 19,2016 Sheet 7 of 10 US 9,317,293 B2

A//' \'\v
~Subroutine return™>.
. ” . « . \'\
112 =< instruction detected in >
N P ineli ?f/
am\fﬂ\xet ution pipe/a'rfw.

.. -~

Yes

Detect a BTIC hit for the subroutine return
instruction NO

113 st

ki

 Consume the BTIC entry for the subroutine return

116 . .
instruction

114

F-\

Continue processing of instructions

Figure &

U.S. Patent

119mm§ BTIC entry to indicate that the BTIC entry is not

122

124 s

g
(e

Apr. 19,2016 Sheet 8 of 10

{ o Start 4
oD e
\ Proce /
\} rocessing _
S - v
‘/
& !
% ‘\
o \,\\ AN

-

.//A \'\
~Subroutine calt~_

o

~. & decode stage of an 7
™. - o .
execution papei/me’.f

~ -
\,\ o

e . N
_~instruction detected in~
evereeeeseeseereeeseeee oo

BT oo

. e
N~

1

Yes

Clear a validity indicator that corresponds to a

valid

X

US 9,317,293 B2

Write at least one sequential instruction fetched

sequential to the subroutine call instruction into g
‘branch ta rgat instruction field in the BTIC entry for
a subroutine return instruction

Calculate a next instruction fetch address

¥

Write the next instruction fetch address into a
next instruction fetch address field in the BTIC
entry for the subroutine return instruction

¥

Set a validity indicator that corresponds to the
BTIC entry to indicate that the BTIC entry is vali

o

4

T

7 ™
l'i ToBin

Figure

A

U.S. Patent Apr. 19,2016 Sheet 9 of 10

/‘/ \V\\
Subroutine retura_
‘ ~nstruction detected in>_
118 s 0 seeNo
~.A decode stage of an_~
éxecution pipelipe?
\‘\\, /‘//.

~. r
\“//

Yes

Y\
// ™~
e N
~

B BTIC hit detecteﬁ'i‘s{\
_stbroutine return instruction _
130wl {i.e, valid BTIC entry for > No

US 9,317,293 B2

. . R . -
wubroutine return instruction”
. e
T exists)? 7

Yes

¥

Provide the next fetch address from the next fetch
address field of the BTIC entry for the subroutine
return instruction to a fetch stage of the execution
pipeline

i34

¥

Provide the at least one sequential instruction

from the branch target instruction field in the BTIC

' entry for the subroutine return instruction 1o an
issue stage of the execution pipeline

Figure 7B

US 9,317,293 B2

Sheet 10 of 10

Apr. 19,2016

U.S. Patent

8 8l o (8sT (N)ogT | (0)ost
WIOMIBN X - et
O Nyad 1 %¥ag
(ysT) {av1)
A {0ST) @Mwwm JOH0UOT
{s}emanq {s}eniasg e a AIDWIBIN
wnding anduy BB
NIOMIBN
. >
g1
(rri) sng waisis
Z
A i {351)
el {sMejoa3u0s Avjdsig
{z1}
oudd A¥ {TrTi]
.................. N SUoeT
{01} (zo1) | {w91)
{s}0s52004d - E\mmama o m%wmmmuo&
fovtiising> L GapIA
\\\uﬁ
geT

US 9,317,293 B2

1
ESTABLISHING A BRANCH TARGET
INSTRUCTION CACHE (BTIC) ENTRY FOR
SUBROUTINE RETURNS TO REDUCE
EXECUTION PIPELINE BUBBLES, AND
RELATED SYSTEMS, METHODS, AND
COMPUTER-READABLE MEDIA

PRIORITY APPLICATION

The present application claims priority to U.S. Provisional
Patent Application Ser. No. 61/730,717 filed on Nov. 28,2012
and entitled “ESTABLISHING A BRANCH TARGET
INSTRUCTION CACHE (BTIC) ENTRY FOR SUBROU-
TINE RETURNS TO REDUCE EXECUTION PIPELINE
STALLS, AND RELATED SYSTEMS, METHODS, AND
COMPUTER-READABLE MEDIA,” which is hereby incor-
porated herein by reference in its entirety.

BACKGROUND

1. Field of the Disclosure

The technology of the disclosure relates to branch predic-
tion in computer systems, and more particularly to branch
target buffers (BTBs) and/or branch target instruction caches
(BTICs).

II. Background

Instruction pipelining is a processing technique whereby
the throughput of computer instructions being executed by a
processor may be increased by splitting the handling of each
instruction into a series of steps, and executing the steps in an
execution pipeline composed of multiple stages. Optimal pro-
cessor performance may be achieved if all stages in an execu-
tion pipeline are able to process instructions concurrently
without incurring a pipeline “bubble” when instruction redi-
rection occurs. Instructions processed within an execution
pipeline may include branch instructions, which redirect the
flow of a program by transferring program control to a speci-
fied branch target instruction. If a branch instruction is con-
ditional, (i.e., it is not known whether the branch will be taken
until execution), branch prediction hardware may be
employed to predict whether the branch will be taken based
on resolution of previously executed conditional branch
instructions.

In a conventional execution pipeline, instructions follow-
ing a branch instruction are fetched into the execution pipe-
line concurrently with decoding the branch instruction.
Accordingly, when a branch is predicted to be taken, the
instructions that were fetched sequential to the branch
instruction (i.e., the instructions that would be executed if the
branch were not taken) are flushed. The correct branch target
instructions are then fetched. This process is typically
referred to as an instruction fetch redirect. Because the
instruction fetch redirect may consume one or more clock
cycles, one or more pipeline bubbles may be introduced into
the execution pipeline at the point where the decode stage
idles while the branch target instructions are fetched. Once
introduced, a pipeline bubble propagates through subsequent
stages of the execution pipeline.

To reduce the frequency of pipeline bubbles, a branch
target instruction cache (BTIC) may be utilized. A BTIC
stores copies of one or more branch target instructions (i.e.,
instruction(s) at a target address to which a branch instruction
transfers program control when the branch is taken). Branch
target instructions cached in the BTIC may be partially or
fully decoded. The BTIC may also cache a next instruction
fetch address for fetching one or more next subsequent
instructions after a cached branch target instruction. The

w

10

15

20

25

30

35

40

45

50

55

60

65

2

BTIC is typically consulted during the fetch stage of the
execution pipeline, and provides branch target instruction(s)
to one or more subsequent stages of an execution pipeline to
reduce or eliminate an occurrence of a pipeline bubble intro-
duced as a result of an instruction fetch redirect.

A BTIC entry is established for a branch instruction when
the branch instruction is recognized and the branch is first
taken. Consequently, when a branch instruction is encoun-
tered for the first time, a BTIC entry does not exist for the
branch instruction, and a BTIC cache “miss” occurs. In the
particular case of a subroutine return instruction (a specific
type of branch instruction), when the subroutine return
instruction is first encountered, the subroutine return instruc-
tion will always experience a BTIC cache miss. It is desirable
for a BTIC entry corresponding to the subroutine return
instruction to provide correct branch target instructions when
the subroutine return instruction is first encountered.

Moreover, because a subroutine may be called from mul-
tiple branch instructions at different points within a program,
a BTIC entry for a subroutine return instruction may fre-
quently contain incorrect branch target instructions. For
example, when a subroutine that is called from a first calling
location returns, the instructions sequential to the first calling
location are executed and are populated in the BTIC entry for
the subroutine return instruction as branch target instructions.
It the subroutine is subsequently called from a second calling
location, the instructions sequential to the second calling
location should be executed after the subroutine returns.
However, the branch target instructions cached in the BTIC
entry for the subroutine return instruction are instructions
following the first calling location, not instructions following
the second calling location. Thus, the subroutine return
instruction’s BTIC entry does not contain correct branch
target instructions for the second calling location. It is desir-
able for the subroutine return instruction’s BTIC entry to
provide correct branch target instructions, even after the sub-
routine is called from a different calling location.

SUMMARY OF THE DISCLOSURE

Embodiments of the disclosure provide establishing a
branch target instruction cache (BTIC) entry for a subroutine
return instruction to reduce execution pipeline bubbles.
Related systems, methods, and computer-readable media are
also disclosed. Conventionally, in response to detection of a
branch instruction that is predicted to be taken, instructions
sequential to the branch instruction (in program order) that
have been already been fetched are flushed from an execution
pipeline. However, when the branch instruction is a subrou-
tine call instruction, those flushed sequential instructions are
likely to be the branch target instructions for a subroutine
return instruction that will transfer program control back
from the subroutine called by the subroutine call instruction.
Accordingly, embodiments disclosed herein provide estab-
lishing a BTIC entry for the subroutine return instruction in
response to detecting the subroutine call instruction. In this
manner, the BTIC may provide a valid BTIC entry for the
subroutine return instruction when the subroutine return
instruction is first encountered. Furthermore, the BTIC entry
may provide correct branch target instructions for the subrou-
tine return instruction, even when the subroutine is called
from a calling location different from a prior calling location.

Inthis regard, in one embodiment, a method of establishing
a BTIC entry for a subroutine return instruction in an execu-
tion pipeline to reduce an occurrence of an execution pipeline
bubble is provided. The method comprises detecting a sub-
routine call instruction in an execution pipeline. In response

US 9,317,293 B2

3

to detecting the subroutine call instruction, the method further
comprises establishing a BTIC entry for a subroutine return
instruction by writing at least one sequential instruction
fetched sequential to the subroutine call instruction as a
branch target instruction in the BTIC entry for the subroutine
return instruction. The method also comprises calculating a
next instruction fetch address. The method additionally com-
prises writing the next instruction fetch address into a next
instruction fetch address field in the BTIC entry for the sub-
routine return instruction. In this manner, the BTIC may
provide correct branch target instruction and next instruction
fetch address data for the subroutine return instruction, even
if the subroutine return instruction is encountered for the first
time or the subroutine is called from a calling location differ-
ent from a prior calling location.

In another embodiment, a pipeline bubble reduction circuit
is provided. The pipeline bubble reduction circuit comprises
a subroutine call detection circuit configured to detect a sub-
routine call instruction in an execution pipeline. The pipeline
bubble reduction circuit further comprises a BTIC entry
establishing circuit configured to, in response to the subrou-
tine call detection circuit detecting the subroutine call instruc-
tion, write at least one sequential instruction fetched sequen-
tial to the subroutine call instruction as a branch target
instruction in a BTIC entry for a subroutine return instruction.
The BTIC entry establishing circuit is further configured to
calculate a next instruction fetch address. The BTIC estab-
lishing circuit is also configured to write the next instruction
fetch address into a next instruction fetch address field in the
BTIC entry for the subroutine return instruction.

In an additional embodiment, a pipeline bubble reduction
circuit is provided. The pipeline bubble reduction circuit
comprises a means for detecting a subroutine call instruction
in an execution pipeline. The pipeline bubble reduction cir-
cuit further comprises a means for establishing a BTIC entry
for a subroutine return instruction in response to detecting the
subroutine call instruction. The means for establishing the
BTIC entry comprises a means for writing at least one
sequential instruction fetched sequential to the subroutine
call instruction as a branch target instruction in the BTIC
entry for the subroutine return instruction in response to
detecting the subroutine call instruction. The means for estab-
lishing the BTIC entry also comprises a means for calculating
a next instruction fetch address in response to detecting the
subroutine call instruction. The means for establishing the
BTIC entry additionally comprises a means for writing the
next instruction fetch address into a next instruction fetch
address field in the BTIC entry for the subroutine return
instruction in response to detecting the subroutine call
instruction.

In an additional embodiment, a non-transitory computer-
readable medium is provided, having stored thereon com-
puter-executable instructions to cause a processor to imple-
ment a method of establishing a BTIC entry for a subroutine
return instruction in an execution pipeline to reduce an occur-
rence of a pipeline bubble. The method implemented by the
computer-executable instructions comprises detecting a sub-
routine call instruction in an execution pipeline. The method
implemented by the computer-executable instructions further
comprises, in response to detecting the subroutine call
instruction, establishing the BTIC entry for a subroutine
return instruction by writing at least one sequential instruc-
tion fetched sequential to the subroutine call instruction as a
branch target instruction in the BTIC entry for the subroutine
return instruction. The method implemented by the com-
puter-executable instructions also comprises calculating a
next instruction fetch address. The method implemented by

10

15

20

25

30

35

40

45

50

55

60

65

4

the computer-executable instructions additionally comprises
writing the next instruction fetch address into a next instruc-
tion fetch address field in the BTIC entry for the subroutine
return instruction.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a block diagram of an exemplary processor that
includes a pipeline bubble reduction circuit configured to
establish a branch target instruction cache (BTIC) entry for a
subroutine return instruction to reduce an occurrence of
execution pipeline bubbles;

FIG. 2 is a diagram providing an exemplary instruction
sequence that may be processed by the execution pipeline
bubble reduction circuit of FIG. 1;

FIG. 3 is a timing diagram illustrating the exemplary
instruction sequence of FI1G. 2 being processed by the exem-
plary processor of FIG. 1 utilizing a BTIC, showing an exem-
plary occurrence of a pipeline bubble as a result of encoun-
tering a predicted taken branch, and elimination of the
pipeline bubble using the pipeline bubble reduction circuit of
FIG. 1,

FIGS. 4A and 4B are timing diagrams showing the exem-
plary instruction sequence of FIG. 2 being processed in a
processor utilizing the pipeline bubble reduction circuit of
FIG. 1, illustrating elimination of a pipeline bubble resulting
from encountering a subroutine return instruction;

FIG. 5 is a flowchart showing exemplary operations for
establishing a BTIC entry for a subroutine return instruction
to reduce an occurrence of an execution pipeline bubble;

FIG. 6 is a flowchart illustrating exemplary operations for
consuming a BTIC entry for a subroutine return instruction in
response to detecting the subroutine return instruction;

FIGS. 7A and 7B are flowcharts illustrating, in more detail,
exemplary operations for establishing and consuming a BTIC
entry to reduce an occurrence of a pipeline bubble; and

FIG. 8 is a diagram of an exemplary processor-based sys-
tem that can include the pipeline bubble reduction circuit of
FIG. 1, configured to establish a BTIC entry for a subroutine
return instruction to reduce an occurrence of a pipeline
bubble.

DETAILED DESCRIPTION

With reference now to the drawing figures, several exem-
plary embodiments of the present disclosure are described.
The word “exemplary” is used herein to mean “serving as an
example, instance, or illustration.” Any embodiment
described herein as “exemplary” is not necessarily to be con-
strued as preferred or advantageous over other embodiments.

Embodiments of the disclosure provide establishing a
branch target instruction cache (BTIC) entry for a subroutine
return instruction to reduce execution pipeline bubbles.
Related systems, methods, and computer-readable media are
also disclosed. Conventionally, in response to detection of a
branch instruction that is predicted to be taken, instructions
sequential to the branch instruction (in program order) that
have been already been fetched are flushed from an execution
pipeline. However, when the branch instruction is a subrou-
tine call instruction, those flushed sequential instructions are
likely to be the branch target instructions for a subroutine
return instruction that will transfer program control back
from the subroutine called by the subroutine call instruction.
Accordingly, embodiments disclosed herein provide estab-
lishing a BTIC entry for the subroutine return instruction in
response to detecting the subroutine call instruction. In this
manner, the BTIC may provide a valid BTIC entry for the

US 9,317,293 B2

5

subroutine return instruction when the subroutine return
instruction is first encountered. Furthermore, the BTIC entry
may provide correct branch target instructions for the subrou-
tine return instruction, even when the subroutine is called
from a calling location different from a prior calling location.

In this regard, in one embodiment, a method of establishing
a BTIC entry for a subroutine return instruction in an execu-
tion pipeline to reduce an occurrence of an execution pipeline
bubble is provided. The method comprises detecting a sub-
routine call instruction in an execution pipeline. In response
to detecting the subroutine call instruction, the method further
comprises establishing the BTIC entry for a subroutine return
instruction by writing at least one sequential instruction
fetched sequential to the subroutine call instruction as a
branch target instruction in the BTIC entry for the subroutine
return instruction. The method also comprises calculating a
next instruction fetch address. The method additionally com-
prises writing the next instruction fetch address into a next
instruction fetch address field in the BTIC entry for the sub-
routine return instruction. In this manner, the BTIC may
provide correct branch target instruction and next instruction
fetch address data for the subroutine return instruction, even
if the subroutine return instruction is encountered for the first
time or the subroutine is called from a calling location differ-
ent from a prior calling location.

In this regard, FIG. 1 is a block diagram of an exemplary
processor 10. The processor 10 includes a pipeline bubble
reduction circuit 12 configured to establish a BTIC entry (not
shown) for a subroutine return instruction to reduce an occur-
rence of a pipeline bubble. The processor 10 may encompass
any one of known digital logic elements, semiconductor cir-
cuits, processing cores, and/or memory structures, among
other elements, or combinations thereof. Embodiments
described herein are not restricted to any particular arrange-
ment of elements, and the disclosed techniques may be easily
extended to various structures and layouts on semiconductor
dies or packages. The processor 10 includes an input/output
(I/O) circuit 14, an instruction cache 16, and a data cache 18.
The processor 10 further comprises an execution pipeline 20,
which includes a front-end circuit 22, an execution unit 24,
and a completion unit 26. The processor 10 additionally
includes a link stack 28 as well as registers 30, which com-
prise one or more general purpose registers (GPR) 32, a
program counter 34, and a link register 36. In some embodi-
ments, such as those employing the ARM v7 architecture, the
link register 36 is one of the GPRs 32, as shown in FIG. 1.
Alternately, some embodiments, such as those utilizing a
PowerPC architecture, may provide that the link register 36 is
separate from the GPRs 32 (not shown).

In exemplary operation, the front-end circuit 22 of the
execution pipeline 20 fetches instructions from the instruc-
tion cache 16. In most embodiments, the instruction cache 16
may be an on chip Level 1 (L.1) cache, as a non-limiting
example. The fetched instructions are decoded by the front-
end circuit 22 and issued to the execution unit 24. The execu-
tion unit 24 executes the issued instructions, and the comple-
tion unit 26 retires the executed instructions. In some
embodiments, the completion unit 26 may comprise a write-
back mechanism that stores the execution results in one or
more targeting file registers. It is to be understood that the
execution unit 24 and/or the completion unit 26 may each
comprise one or more sequential pipeline stages. It is to be
further understood that instructions may be fetched and/or
decoded in groups of more than one.

In some embodiments, the processor 10 may employ
branch prediction, the exemplary operation of which is now
described. The front-end circuit 22 comprises pipeline stages

10

15

20

25

30

35

40

45

50

55

60

65

6

including sequential fetch/decode pipeline stages 38, 40, and
42 (referred to herein as FE |, FE,, and FE,, respectively), and
an issue/dispatch stage 44. One or more of the pipeline stages
38, 40, and 42 are associated with a branch prediction circuit
46 comprising a branch control logic (BCL) circuit 48, a
branch target instruction cache (BTIC) 50, a branch target
address cache (BTAC) 52, and a branch history table (BHT)
54.

The pipeline bubble reduction circuit 12 of the processor
10 includes a subroutine call detection circuit 56, a BTIC
entry establishing circuit 58, a subroutine return detection
circuit 60, and a BTIC consuming circuit 62. Operations
performed by these elements of the pipeline bubble reduction
circuit 12 to establish BTIC entry for subroutine return
instructions to reduce execution pipeline bubbles are dis-
cussed in more detail below. In some embodiments, the BTIC
entry establishing circuit 58 and/or the BTIC consuming cir-
cuit 62 may utilize logic or functionality provided in part by
the BTIC 50.

Before examples of methods, systems, and computer-read-
able media for establishing a BTIC entry for subroutine return
instructions are described, the operation of a conventional
BTIC is first described. To simplify the examples discussed
below, an exemplary instruction sequence 64 representing a
typical series of instructions that may be processed by the
execution pipeline 20 of FIG. 1 is provided in FIG. 2. The
exemplary instruction sequence 64 comprises instructions 66,
68, 70, 72, 74, 76, 78, and 79, referred to herein as Instr,,
Instr,, Instr,, Instr;, Instry, Instry,,, Instry,,, and Instry
respectively. The order in which the above-referenced
instructions appear in FIG. 2 represents the sequential order
in which the instructions are stored within a persistent storage
medium, such as a hard drive or flash memory. However, as
the instructions are executed by the processor 10, program
control may be transferred from one location to another by
instructions such as branch instructions. As aresult, the actual
order in which the instructions are fetched and executed by
the processor 10 may vary from the sequence in which the
instructions are stored.

InFIG. 2, atransfer of program control during execution of
the instructions is illustrated by arrows of a program flow 80.
As indicated by the program flow 80, program execution
begins with instruction Instr, and proceeds to Instr,, which in
this example is a subroutine call instruction. In some embodi-
ments, subroutine call instructions may include a branch-and-
link (BL) instruction that places a return address of the sub-
routine call instruction into a link register, such as the link
register 36 of FIG. 1, and sets a program counter, such as the
program counter 34 of FIG. 1, to an instruction address of a
subroutine. Here, the subroutine call instruction Instr, causes
program control to be transferred to the instruction Instr,,
which is a subroutine start instruction.

Next, the instructions Instry., ; and Instr,., , are fetched and
executed in sequence. Instry,, , is a subroutine return instruc-
tion, which is a branch instruction that causes program con-
trol to return to the instruction sequential to the subroutine
call instruction that called the subroutine. Some embodi-
ments may provide that a subroutine return instruction is a
branch-to-link (BLR) instruction that sets a program counter,
such as the program counter 34 of FIG. 1, to a return address
of the subroutine call instruction. In this example, execution
of the instruction Instry., , transfers program control to the
instruction Instr,, the instruction immediately following the
subroutine call instruction Instr,. Processing of the instruc-
tions then proceeds sequentially, with the instruction Instr;
and any following instructions fetched and executed in order.
As shown in FIG. 2, the instruction Instr represents a starting

US 9,317,293 B2

7

point of a next subroutine. Although the instruction Instr,
immediately follows the subroutine return instruction Instr,,,
2, the instruction Instr, and subsequent instructions are not
executed unless called by another branch instruction within
the program (not shown).

FIG. 3 is provided to more clearly illustrate an exemplary
occurrence of an execution pipeline bubble as a result of
encountering a predicted taken branch, and use of a BTIC to
eliminate the pipeline bubble. FIG. 3 is a timing diagram
showing the exemplary instruction sequence 64 of FIG. 2 as it
is processed by a processor employing a BTIC, such as the
processor 10 of FIG. 1. The columns in the timing diagram
(labeled 0,1, 2, ... 8) each represents a single processor clock
cycle. The rows in the timing diagram (labeled “Next Fetch,”
“FE,,” “FE,,” and “FE;”) indicate the contents of a “next
fetch” indicator 82 and the execution pipeline stages FE,,
FE,, and FE; during each processor clock cycle. In this
example, the “next fetch” indicator 82 indicates the next
instruction that will be fetched by the processor during the
next processor clock cycle in the execution pipeline stage
FE,. In this manner, the progression of instructions through
the execution pipeline stages over the course of several clock
cycles is shown.

FIG. 3 further illustrates the BTIC 50 of FIG. 1 employed
for storing entries corresponding to branch instructions
detected in the exemplary instruction sequence 64. The BTIC
50 includes as part of each BTIC entry a next instruction fetch
address field and a branch target instruction field. The branch
target instruction field stores a copy of one or more instruc-
tions to which a corresponding branch instruction is predicted
to transfer program control. The next instruction fetch
address field stores an address of the next instruction follow-
ing the branch target instruction(s) in the branch target
instruction field. The use of the next instruction fetch address
field and the branch target instruction field in eliminating a
pipeline bubble is discussed in greater detail below. It is to be
understood that the example timing diagram illustrated in
FIG. 3 assumes that the subroutine call instruction Instr, has
already been detected once, resulting in establishment of a
BTIC entry 84 in the BTIC 50 populated with the appropriate
next instruction fetch address and branch target instruction
values.

With continuing reference to FIG. 3, processing begins at
processor clock cycle 0 with Instr,, the first instruction in the
exemplary instruction sequence 64 of FIG. 2. At processor
clock cycle 0, the next fetch indicator 82 indicates that the
instruction Instr, will be fetched next for processing. At pro-
cessor clock cycle 1, the instruction Instr, has proceeded to
the execution pipeline stage FE, for fetching. The next fetch
indicator 82 has also updated to indicate that the subroutine
call instruction Instr,, which is sequential to the instruction
Instr, in the exemplary instruction sequence 64, will be
fetched next. During processor clock cycle 2, the instruction
Instr, is decoded in the execution pipeline stage FE,, while
the instruction Instr, is fetched in the execution pipeline stage
FE,. At this point, the instruction Instr, is not recognized as a
branch instruction. Consequently, the next fetch indicator 82
is updated in processor clock cycle 2 to indicate that the next
instruction sequential to the instruction Instr, (i.e., the
instruction Instr,) will be fetched next.

In processor clock cycle 3, an execution pipeline bubble
occurs. The instruction Instr, has reached the execution pipe-
line stage FE;. The subroutine call instruction Instr, is
decoded in the execution pipeline stage FE,, where it is iden-
tified as a predicted taken branch. An instruction fetch redi-
rect is initiated to flush any incorrectly fetched instructions
from the execution pipeline, and to fetch the correct branch

10

15

20

25

30

35

40

45

50

55

60

65

8

target instruction for the subroutine call instruction Instr,.
Because the correct branch target instruction for the subrou-
tine call instruction Instr, (i.e., the instruction Instr,,) cannot
be fetched until the next processor clock cycle, a pipeline
bubble indicated in FIG. 3 as “Instr, (bubble)” is introduced in
the execution pipeline stage FE,. As seen in FIG. 3, the
instruction Instr,, which is fetched into FE,, occupies the
pipeline bubble during processor clock cycle 3.

Ifthe processor did not employ the BTIC 50, the execution
pipeline bubble would propagate within the execution pipe-
line over the following processor clock cycles, resulting in
decreased processor throughput and inefficient power con-
sumption. However, in this example, the BTIC 50 is available
to eliminate the execution pipeline bubble. During processor
clock cycle 3, the BTIC 50 is accessed, and the previously-
established BTIC entry 84 for the subroutine call instruction
Instr, is located. The BTIC 50 provides the contents of the
next instruction fetch address field for the BTIC entry 84.
Accordingly, the next fetch indicator 82 is updated to indicate
that the instruction Instry, ; (i.e., the instruction following the
branch target instruction Instr,) will be fetched next, as indi-
cated by arrow 86.

With continuing reference to FIG. 3, during processor
clock cycle 4, the instruction Instr, proceeds to the remaining
issue and execution stages in a remainder of the execution
pipeline 88, while the instruction Instr, reaches the execution
pipeline stage FE;. The instruction Instr,., , is fetched in the
execution pipeline stage FE, . Note that the execution pipeline
bubble introduced in processor clock cycle 3 is still present,
having reached the execution pipeline stage FE,. However,
when the execution pipeline bubble reaches the execution
stage FE; during processor clock cycle 5, the BTIC 50 sup-
plies the branch target instructions (e.g., Instry) from the
BTIC entry 84 for the subroutine call instruction Instr, to the
execution pipeline stage FE;, as indicated by arrow 90. In this
manner, the pipeline bubble is eliminated, and the remaining
instructions move through the pipeline during processor
clock cycles 6 and 7.

As with other types of branch instructions, a subroutine
return instruction will always result in a BTIC cache miss
when the subroutine return instruction is first encountered.
Furthermore, because a subroutine may be called from mul-
tiple branch instructions at different points within a program,
a BTIC entry for a subroutine return instruction may fre-
quently contain incorrect branch target instructions. Accord-
ingly, the pipeline bubble reduction circuit 12 of FIG. 1 may
be provided to reduce an occurrence of a pipeline bubble
when processing a subroutine return instruction.

In this regard. FIGS. 4A and 4B are timing diagrams illus-
trating the exemplary instruction sequence 64 of FIG. 2 being
processed by the processor 10 of FIG. 1 utilizing the pipeline
bubble reduction circuit 12. FIG. 4A shows the establishment
of a BTIC entry for a subroutine return instruction upon
detection of a subroutine call instruction, while FIG. 4B illus-
trates the established BTIC entry being used to eliminate a
pipeline bubble. As with FIG. 3, the columns (labeled 0, 1, 2,
. .. 8) in the timing diagrams of FIGS. 4A and 4B each
represents a single processor clock cycle, while the rows in
each timing diagram indicate the contents of a “next fetch”
indicator 82 and the execution pipeline stages FE,, FE,, and
FE, during each processor clock cycle. The next fetch indi-
cator 82 shows the next instruction that will be fetched by the
processor during the next processor clock cycle in the execu-
tion pipeline stage FE,. FIGS. 4A and 4B also illustrate the
pipeline bubble reduction circuit 12 and the BTIC 50. For
purposes of clarity and brevity, it is assumed that establish-
ment of a BTIC entry for the subroutine call instruction Instr,

US 9,317,293 B2

9

takes place as described in FIG. 3, and is not shown in or
described again in conjunction with FIGS. 4A and 4B. While
the example illustrated in FIGS. 4A and 4B employs an
instruction fetch width of one instruction, it is to be under-
stood that some embodiments may provide an instruction
fetch width of greater than one instruction.

With reference to FIG. 4A, at processor clock cycle 0, the
next fetch indicator 82 indicates that the instruction Instr, (the
first instruction in the exemplary instruction sequence 64 of
FIG. 2) will be fetched next for processing. At processor clock
cycle 1, the instruction Instr,, has proceeded to the execution
pipeline stage FE, for fetching, and the next fetch indicator 82
is updated to indicate that the subroutine call instruction
Instr,, which is sequential to the instruction Instr, in the
exemplary instruction sequence 64, will be fetched next. Dur-
ing processor clock cycle 2, the instruction Instr, is decoded
in the execution pipeline stage FE,, while the subroutine call
instruction Instr, is fetched in the execution pipeline stage
FE,. At this point, the subroutine call instruction Instr, is not
recognized as a branch instruction. Consequently, the next
fetch indicator 82 is updated in processor clock cycle 2 to
indicate that the next instruction sequential to the instruction
Instr, (i.e., the instruction Instr,) will be fetched next.

With continuing reference to FIG. 4A, in processor clock
cycle 3, a pipeline bubble occurs. The instruction Instr, has
reached the execution pipeline stage FE,, and the subroutine
call instruction Instr, is decoded in the execution pipeline
stage FE,, where it is identified as a predicted taken branch.
An instruction fetch redirect is initiated to flush any incor-
rectly fetched instructions (i.e., the instruction Instr,) from
the execution pipeline, and to fetch the correct branch target
instruction for the subroutine call instruction Instr, as illus-
trated in FIG. 3.

However, rather than dispose of the incorrectly fetched
instructions, the pipeline bubble reduction circuit 12 utilizes
the instructions fetched when the subroutine call instruction
Instr, was encountered to establish a BTIC entry 92 for the
subroutine return instruction Instr ., ,. In particular, in proces-
sor clock cycle 4, the pipeline bubble reduction circuit 12
retrieves the fetched instruction Instr, from the FE, stage of
the execution pipeline (as indicated by arrow 94), and stores
the fetched instruction Instr, in the BTIC entry 92 as a branch
target instruction, as indicated by arrow 96. Based on the size
of'the instruction Instr,, the pipeline bubble reduction circuit
12 also calculates the address of the instruction Instr; sequen-
tial to the instruction Instr,, and stores the address of the
instruction Instr, in the BTIC entry 92 as a next instruction
fetch address, as indicated by arrow 98. Processing then con-
tinues in much the same manner as described above in FIG. 3,
with the pipeline bubble associated with the subroutine call
instruction Instr, being eliminated using the BTIC 50 in pro-
cessor clock cycle 5.

Referring now to FIG. 4B, operations for eliminating a
pipeline bubble associated with the subroutine return instruc-
tion Instry,, are illustrated. In processor clock cycle 6, a
pipeline bubble occurs in the execution pipeline stage FE,
when the subroutine return instruction Instry, , is decoded in
the execution pipeline stage FE, and identified as a predicted
taken branch, triggering an instruction fetch redirect. When
the pipeline bubble reduction circuit 12 detects the subroutine
return instruction Instry, ,, the BTIC 50 is accessed, and the
BTIC entry 92 for the subroutine return instruction Instry,, , is
located. The BTIC 50 provides the contents of the next
instruction fetch address field for the BTIC entry 92 to the
next fetch indicator 82, which is updated to indicate that the
instruction Instr; (i.e., the instruction following the branch
target instruction Instr,) will be fetched next, as indicated by

10

15

20

25

30

35

40

45

50

55

60

65

10

arrow 99. Two processor clock cycles later, during processor
clock cycle 8, the BTIC 50 supplies the branch target instruc-
tion (e.g., Instr,) from the BTIC entry 92 for the subroutine
return instruction Instry, , to the execution pipeline stage FE;,
as indicated by arrow 100. In this manner, the pipeline bubble
is eliminated.

In some embodiments, the subroutine call detection circuit
56 (shown in FIG. 1) of the pipeline bubble reduction circuit
12 may be operative to detect the subroutine call instruction
Instr,. Some embodiments provide that the BTIC entry 92 for
the subroutine return instruction Instr,, , may be established
and populated by the BTIC entry establishing circuit 58 ofthe
pipeline bubble reduction circuit 12. Some embodiments may
provide that the subroutine return instruction Instr,., , is
detected by the subroutine return detection circuit 60 of the
pipeline bubble reduction circuit 12. In some embodiments,
the BTIC consuming circuit 62 of the pipeline bubble reduc-
tion circuit 12 may detect a BTIC hit for the subroutine return
instruction Instry., ,, and may access the BTIC 50 to retrieve
the next instruction fetch address field and the branch target
instruction in the BTIC entry 92.

As illustrated in FIGS. 4A and 4B, a detection of a subrou-
tine call instruction may trigger the creation of'a BTIC entry,
such as the BTIC entry 92, for a corresponding subroutine
return instruction. Upon its creation, the BTIC entry may be
“tagged” with the subroutine return instruction address,
which may facilitate retrieval of the BTIC entry when the
subroutine return instruction is encountered. For example, a
detection of the subroutine return instruction in some
embodiments results in a search of the BTIC to determine
whether a BTIC entry having the address of the subroutine
return instruction as a tag exists in the BTIC.

Some embodiments may provide alternate mechanisms for
retrieving a BTIC entry for a subroutine return address. For
example, in some embodiments, the BTIC may be linked to a
link stack, such as the link stack 28 of FIG. 1. When a sub-
routine call instruction is detected, a BTIC entry may be
created for the subroutine return instruction as described
above. Additionally, a link stack entry for the subroutine call
instruction in the link stack may be updated to indicate that
the BTIC entry exists for the subroutine return instruction.
Upon detection of the subroutine return instruction, the
appropriate BTIC entry may be determined by examining the
link stack entry for the subroutine call instruction. Some
embodiments may provide that a link stack entry directly
indicates a corresponding BTIC, such that a given link stack
entry always corresponds to a particular BTIC entry. In some
embodiments, a link stack entry may indicate a corresponding
BTIC entry indirectly by, for example, including a pointer to
the corresponding BTIC entry. FIG. 5 is a flowchart illustrat-
ing exemplary operations carried out by the pipeline bubble
reduction circuit 12 of FIG. 1 for establishing a BTIC entry
for a subroutine return instruction to reduce an occurrence of
a pipeline bubble, with reference to FIGS. 1 and 2. The
process in this example begins with the pipeline bubble
reduction circuit 12 determining whether a subroutine call
instruction has been detected in the execution pipeline 20
(block 102). As noted above, some embodiments may provide
that a branch instruction, such as a subroutine call instruction,
cannot be detected until the branch instruction is decoded.
Accordingly, in some embodiments, the pipeline bubble
reduction circuit 12 may communicate with an execution
pipeline stage, such as the execution pipeline stage FE,, in
order to detect a subroutine call instruction.

If no subroutine call instruction is detected at block 102,
processing of instructions continues at block 104. However, if
a subroutine call instruction is detected in the execution pipe-

US 9,317,293 B2

11

line 20, the pipeline bubble reduction circuit 12 has identified
an opportunity to establish a BTIC entry for the subroutine
return instruction corresponding to the detected subroutine
call instruction. Note that at the time the subroutine call
instruction is identified, at least one sequential instruction
sequential to the subroutine call instruction has been or is
being fetched. Because a subroutine return instruction for the
subroutine will transfer program control back to the at least
one sequential instruction after the subroutine is executed, the
at least one sequential instruction may be cached as the
branch target instruction for the subroutine return instruction.
Therefore, the pipeline bubble reduction circuit 12 writes the
at least one sequential instruction fetched sequential to the
subroutine call instruction as a branch target instruction in a
BTIC entry for the subroutine return instruction (block 106).
In some embodiments, the at least one sequential instruction
is written as a branch target instruction in a BTIC entry by a
BTIC entry establishing circuit, such as the BTIC entry estab-
lishing circuit 58 of the pipeline bubble reduction circuit 12.

Next, the pipeline bubble reduction circuit 12 calculates a
next instruction fetch address (block 108). The next instruc-
tion fetch address indicates the location of a next instruction
to be fetched and executed after the at least one sequential
instruction stored as the branch target instruction for the
subroutine return instruction. In some embodiments, opera-
tions for calculating the next instruction fetch address may
depend on a presence or absence of a branch instruction
within the at least one sequential instruction. As a non-limit-
ing example, if the at least one sequential instruction includes
only non-branch instructions, the pipeline bubble reduction
circuit 12 may calculate the next instruction fetch address by
calculating an address of an instruction that follows a last one
of'the at least one sequential instruction. This may be accom-
plished, for instance, by summing an instruction address of a
first of the at least one sequential instruction and an offset
equal to a byte size of the at least one sequential instruction.
As a further non-limiting example, if a last one of the at least
one sequential instruction is a branch instruction, the pipeline
bubble reduction circuit 12 may calculate the next instruction
fetch address by calculating an address of a target instruction
of the branch instruction. As an additional non-limiting
example, if one or more of the at least one sequential instruc-
tion prior to a last one of the at least one sequential instruction
is a branch instruction, and a target instruction of the branch
instruction is a non-branch instruction, the pipeline bubble
reduction circuit 12 may calculate the next instruction fetch
address by calculating an address of an instruction that fol-
lows the target instruction of the branch instruction.

After calculating the next instruction fetch address, the
pipeline bubble reduction circuit 12 writes the next instruc-
tion fetch address into a next instruction fetch address field in
the BTIC entry for the subroutine return instruction (block
110). The BTIC entry for the subroutine return instruction is
then available to eliminate a pipeline bubble that may other-
wise propagate through the execution pipeline after the sub-
routine return instruction is encountered. Processing then
continues at block 104.

FIG. 6 is a flowchart illustrating exemplary operations
carried out by the pipeline bubble reduction circuit 12 of FIG.
1 for consuming a BTIC entry for a subroutine return instruc-
tion in response to detecting the subroutine return instruction.
The pipeline bubble reduction circuit 12 first determines
whether a subroutine return instruction has been detected in
the execution pipeline 20 (block 112). Some embodiments
may provide that a branch instruction, such as a subroutine
return instruction, cannot be detected until the branch instruc-
tion is decoded. Accordingly the pipeline bubble reduction

10

15

20

25

30

35

40

45

50

55

60

65

12

circuit 12 in some embodiments may communicate with an
execution pipeline stage, such as the execution pipeline stage
FE,, in order to detect a subroutine return instruction.

Ifa subroutine return instruction is not detected, processing
of instructions continues at block 114. If a subroutine return
instruction is detected, the pipeline bubble reduction circuit
12 detects a BTIC hit for the subroutine return instruction
(block 113). The pipeline bubble reduction circuit 12 then
consumes the BTIC entry for the subroutine return instruction
(block 116). In some embodiments, consuming the BTIC
entry for the subroutine return instruction eliminates a pipe-
line bubble associated with the subroutine return instruction
by providing the next instruction fetch address and the branch
target instructions to the execution pipeline. Processing then
continues at block 114.

More detailed exemplary operations carried out by the
pipeline bubble reduction circuit 12 of FIG. 1 for establishing
and consuming a BTIC entry to reduce an occurrence of a
pipeline bubble are shown in FIGS. 7A and 7B. FIG. 7TA is a
flowchart detailing exemplary operations related to establish-
ing a BTIC entry to reduce an occurrence of a pipeline bubble,
while FIG. 7B is a flowchart showing exemplary operations
for consuming the BTIC entry for the subroutine return
instruction to eliminate a pipeline bubble in an execution
pipeline.

In FIG. 7A, the pipeline bubble reduction circuit 12 deter-
mines whether a subroutine call instruction has been detected
in the execution pipeline 20 (block 117). An exemplary sub-
routine call instruction may include a branch-and-link (BL)
instruction that places a return address of the subroutine call
instruction into the link register 36, and sets the program
counter 34 to an instruction address of a subroutine. In some
embodiments, the pipeline bubble reduction circuit 12 may
detect the subroutine call instruction in a decode stage of the
execution pipeline 20, such as the decode stage FE,.

If a subroutine call instruction is not detected at block 117,
processing continues at block 118 of FIG. 7B. If the pipeline
bubble reduction circuit 12 detects a subroutine call instruc-
tion, operations for establishing a BTIC entry are carried out.
In some embodiments, the BTIC entry may be established in
a buffer separate from the BTIC itself, and subsequently
copied into the BTIC. Alternatively, some embodiments may
provide that the BTIC entry is established by writing directly
into the BTIC. In the latter case, a validity indicator that
corresponds to the BTIC entry may first be cleared, to indicate
that the BTIC entry is not yet valid for consumption (block
119). It is to be understood that the operations of block 119
may not be necessary in embodiments that employ a separate
buffer for establishing a BTIC entry.

Next, at least one sequential instruction fetched sequential
to the subroutine call instruction is written as a branch target
instruction in a BTIC entry for a subroutine return instruction
(block 120). In some embodiments, the subroutine return
instruction is a branch instruction that indicates a return from
a subroutine called by the subroutine call instruction. Some
embodiments may provide that the BTIC entry is dedicated
for subroutine return instructions. The BTIC entry in some
embodiments may correspond to a link stack entry in the link
stack 28 storing a return address of the subroutine call instruc-
tion. In some embodiments, the at least one sequential
instruction is written as a branch target instruction in a BTIC
entry by a BTIC entry establishing circuit, such as the BTIC
entry establishing circuit 58 of the pipeline bubble reduction
circuit 12.

The pipeline bubble reduction circuit 12 then calculates a
next instruction fetch address (block 122). The next instruc-
tion fetch address indicates a location of a next instruction to

US 9,317,293 B2

13

be fetched and executed after the at least one sequential
instruction stored as the branch target instruction for the
subroutine return instruction. In some embodiments, opera-
tions for calculating the next instruction fetch address may
depend on a presence or absence of a branch instruction
within the at least one sequential instruction. As a non-limit-
ing example, if the at least one sequential instruction includes
only non-branch instructions, the pipeline bubble reduction
circuit 12 may calculate the next instruction fetch address by
calculating an address of an instruction that follows a last one
of'the at least one sequential instruction. This may be accom-
plished, for instance, by summing an instruction address of a
first of the at least one sequential instruction and an offset
equal to a byte size of the at least one sequential instruction.
As a further non-limiting example, if a last one of the at least
one sequential instruction is a branch instruction, the pipeline
bubble reduction circuit 12 may calculate the next instruction
fetch address by calculating an address of a target instruction
of the branch instruction. As an additional non-limiting
example, if one or more of the at least one sequential instruc-
tion prior to the last one of the at least one sequential instruc-
tion is a branch instruction, and a target instruction of the
branch instruction is a non-branch instruction, the pipeline
bubble reduction circuit 12 may calculate the next instruction
fetch address by calculating an address of an instruction that
follows the target instruction of the branch instruction.

The next instruction fetch address is then written into a next
instruction fetch address field in the BTIC entry for the sub-
routine return instruction (block 124). In some embodiments,
the next instruction fetch address is written into a next instruc-
tion fetch address field in the BTIC entry by a BTIC entry
establishing circuit, such as the BTIC entry establishing cir-
cuit 58 of the pipeline bubble reduction circuit 12. The pipe-
line bubble reduction circuit 12 sets the validity indicator that
corresponds to the BTIC entry to indicate that the BTIC entry
is valid for consumption (block 126). Processing then contin-
ues at block 118 of FIG. 7B.

Referring now to FIG. 7B, the pipeline bubble reduction
circuit 12 determines whether a subroutine return instruction
has been detected in the execution pipeline 20 (block 118). An
exemplary subroutine return instruction may include a
branch-to-link (BLR) instruction for setting the program
counter 34 to a return address of the subroutine call instruc-
tion. Some embodiments may provide that the pipeline
bubble reduction circuit 12 detects the subroutine return
instruction in a decode stage of the execution pipeline 20,
such as the decode stage FE, 40. If a subroutine return instruc-
tion is not detected, processing continues at block 117 of FIG.
7A, discussed in greater detail below. If the pipeline bubble
reduction circuit 12 detects a subroutine return instruction,
the pipeline bubble reduction circuit 12 next determines
whether a BTIC hit for the subroutine return instruction (i.e.,
avalid BTIC entry for the subroutine return instruction in the
BTIC) is detected (block 130). In some embodiments, detect-
ing a BTIC hit for the subroutine return instruction may
include evaluating a validity bit corresponding to the BTIC
entry to determine whether the BTIC entry is valid. If no
BTIC hit is detected for the subroutine return instruction in
the BTIC, processing continues at block 117 of FIG. 7A.

If a BTIC hit is detected, the pipeline bubble reduction
circuit 12 provides the next instruction fetch address from the
next instruction fetch address field of the BTIC entry for the
subroutine return instruction to a fetch stage of the execution
pipeline 20, such as the sequential fetch stage FE, (block
134). The pipeline bubble reduction circuit 12 next provides
the at least one sequential instruction stored as a branch target
instruction(s) in the BTIC entry for the subroutine return

10

15

20

25

30

35

40

45

50

55

60

65

14

address to a subsequent stage of the execution pipeline 20,
such as the FE, stage 40 (block 136). In this manner, the
pipeline bubble reduction circuit 12 in some embodiments
may populate the at least one sequential instruction into the
execution pipeline to eliminate a pipeline bubble associated
with the subroutine return instruction. Processing continues
at block 117 of FIG. 7A

The pipeline bubble reduction circuit 12 according to
embodiments disclosed herein may be provided in or inte-
grated into any processor-based device. Examples, without
limitation, include a set top box, an entertainment unit, a
navigation device, a communications device, a fixed location
data unit, a mobile location data unit, a mobile phone, a
cellular phone, a computer, a portable computer, a desktop
computer, a personal digital assistant (PDA), a monitor, a
computer monitor, a television, a tuner, a radio, a satellite
radio, a music player, a digital music player, a portable music
player, a digital video player, a video player, a digital video
disc (DVD) player, and a portable digital video player.

In this regard, FIG. 8 illustrates an example of a processor-
based system 138 that can employ the pipeline bubble reduc-
tion circuit (PBRC) 12 illustrated in FIG. 1. In this example,
the processor-based system 138 includes one or more CPU(s)
140. The CPU(s) 140 may include one or more processor(s)
10, and may have cache memory 142 coupled to the proces-
sor(s) 10 for rapid access to temporarily stored data. The
processor(s) 10 may comprise the pipeline bubble reduction
circuit 12. The CPU(s) 140 is coupled to a system bus 144 and
can intercouple master and slave devices included in the
processor-based system 138. As is well known, the CPU(s)
140 communicates with these other devices by exchanging
address, control, and data information over the system bus
144. For example, the CPU(s) 140 can communicate bus
transaction requests to a memory controller 146, as an
example of a slave device. Although not illustrated in FIG. 8,
multiple system buses 144 could be provided.

Other master and slave devices can be connected to the
system bus 144. As illustrated in FIG. 8, these devices can
include a memory system 148, one or more input devices 150,
one or more output devices 152, one or more network inter-
face devices 154, and one or more display controllers 156, as
examples. The input device(s) 150 can include any type of
input device, including but not limited to input keys, switches,
voice processors, etc. The output device(s) 152 can include
any type of output device, including but not limited to audio,
video, other visual indicators, etc. The network interface
device(s) 154 can be any device(s) configured to allow
exchange of'data to and from a network 158. The network 158
can be any type of network, including but not limited to a
wired or wireless network, a private or public network, a local
areanetwork (LAN), a wide local area network (WLAN), and
the Internet. The network interface device(s) 154 can be con-
figured to support any type of communication protocol
desired. The memory system 148 can include one or more
memory units 160(0-N).

The CPU(s) 140 may also be configured to access the
display controller(s) 156 over the system bus 144 to control
information sent to one or more displays 162. The display
controller(s) 156 sends information to the display(s) 162 to be
displayed via one or more video processors 164, which pro-
cess the information to be displayed into a format suitable for
the display(s) 162. The display(s) 162 can include any type of
display, including but not limited to a cathode ray tube (CRT),
a liquid crystal display (LCD), a plasma display, etc.

Those of skill in the art will further appreciate that the
various illustrative logical blocks, modules, circuits, and
algorithms described in connection with the embodiments

US 9,317,293 B2

15

disclosed herein may be implemented as electronic hardware,
instructions stored in memory or in another computer-read-
able medium and executed by a processor or other processing
device, or combinations of both. The master devices and slave
devices described herein may be employed in any circuit,
hardware component, integrated circuit (IC), IC chip, or
semiconductor die, as examples. Memory disclosed herein
may be any type and size of memory and may be configured
to store any type of information desired. To clearly illustrate
this interchangeability, various illustrative components,
blocks, modules, circuits, and steps have been described
above generally in terms of their functionality. How such
functionality is implemented depends upon the particular
application, design choices, and/or design constraints
imposed on the overall system. Skilled artisans may imple-
ment the described functionality in varying ways for each
particular application, but such implementation decisions
should not be interpreted as causing a departure from the
scope of the present disclosure.

The various illustrative logical blocks, modules, and cir-
cuits described in connection with the embodiments dis-
closed herein may be implemented or performed with a pro-
cessor, a DSP, an Application Specific Integrated Circuit
(ASIC), an FPGA or other programmable logic device, dis-
crete gate or transistor logic, discrete hardware components,
or any combination thereof designed to perform the functions
described herein. A processor may be a microprocessor, but in
the alternative, the processor may be any conventional pro-
cessor, controller, microcontroller, or state machine. A pro-
cessor may also be implemented as a combination of com-
puting devices, e.g., a combination of a DSP and a
microprocessor, a plurality of microprocessors, one or more
microprocessors in conjunction with a DSP core, or any other
such configuration.

The embodiments disclosed herein may be embodied in
hardware and in instructions that are stored in hardware, and
may reside, for example, in Random Access Memory (RAM),
flash memory, Read Only Memory (ROM). Electrically Pro-
grammable ROM (EPROM), Electrically Erasable Program-
mable ROM (EEPROM), registers, hard disk, a removable
disk, a CD-ROM, or any other form of computer readable
medium known in the art. An exemplary storage medium is
coupled to the processor such that the processor can read
information from, and write information to, the storage
medium. In the alternative, the storage medium may be inte-
gral to the processor. The processor and the storage medium
may reside in an ASIC. The ASIC may reside in a remote
station. In the alternative, the processor and the storage
medium may reside as discrete components in a remote sta-
tion, base station, or server.

It is also noted that the operational steps described in any of
the exemplary embodiments herein are described to provide
examples and discussion. The operations described may be
performed in numerous different sequences other than the
illustrated sequences. Furthermore, operations described in a
single operational step may actually be performed in a num-
ber of different steps. Additionally, one or more operational
steps discussed in the exemplary embodiments may be com-
bined. It is to be understood that the operational steps illus-
trated in the flow chart diagrams may be subject to numerous
different modifications as will be readily apparent to one of
skill in the art. Those of skill in the art would also understand
that information and signals may be represented using any of
a variety of different technologies and techniques. For
example, data, instructions, commands, information, signals,
bits, symbols, and chips that may be referenced throughout
the above description may be represented by voltages, cur-

30

40

45

50

55

60

65

16

rents, electromagnetic waves, magnetic fields or particles,
optical fields or particles, or any combination thereof.

The previous description of the disclosure is provided to
enable any person skilled in the art to make or use the disclo-
sure. Various modifications to the disclosure will be readily
apparent to those skilled in the art, and the generic principles
defined herein may be applied to other variations without
departing from the spirit or scope of the disclosure. Thus, the
disclosure is not intended to be limited to the examples and
designs described herein, but rather is to be accorded the
widest scope consistent with the principles and novel features
disclosed herein.

What is claimed is:

1. A method of establishing a branch target instruction
cache (BTIC) entry for a subroutine return instruction in an
execution pipeline to reduce an occurrence of a pipeline
bubble, comprising:

detecting a subroutine call instruction in an execution pipe-

line; and

in response to detecting the subroutine call instruction,

establishing a BTIC entry for a subroutine return

instruction by:

writing at least one sequential instruction fetched
sequential to the subroutine call instruction as a
branch target instruction in the BTIC entry for the
subroutine return instruction;

calculating a next instruction fetch address; and

writing the next instruction fetch address into a next
instruction fetch address field in the BTIC entry for
the subroutine return instruction.

2. The method of claim 1, wherein the subroutine return
instruction indicates a return from a subroutine called by the
subroutine call instruction.

3. The method of claim 1, wherein the at least one sequen-
tial instruction is a non-branch instruction; and

wherein calculating a next instruction fetch address com-

prises calculating an address of an instruction that fol-
lows a last one of the at least one sequential instruction.

4. The method of claim 1, wherein a last one of the at least
one sequential instruction is a branch instruction; and

wherein calculating a next instruction fetch address com-

prises calculating an address of a target instruction of the
branch instruction.

5. The method of claim 1, wherein one or more of the at
least one sequential instruction prior to a last one of the at
least one sequential instruction is a branch instruction;

wherein a target instruction of the branch instruction is a

non-branch instruction; and

wherein calculating a next instruction fetch address com-

prises calculating an address of an instruction that fol-
lows the target instruction of the branch instruction.

6. The method of claim 1, wherein establishing the BTIC
entry further comprises setting a validity indicator that cor-
responds to the BTIC entry to indicate that the BTIC entry is
valid.

7. The method of claim 1, wherein detecting the subroutine
call instruction comprises detecting the subroutine call
instruction in a decode stage in the execution pipeline.

8. The method of claim 1, further comprising:

detecting the subroutine return instruction in the execution

pipeline; and

in response to detecting the subroutine return instruction:

detecting a BTIC hit for the subroutine return instruc-
tion; and

consuming the BTIC entry for the subroutine return
instruction.

US 9,317,293 B2

17

9. The method of claim 8, wherein detecting the BTIC hit
for the subroutine return instruction comprises determining,
based on a validity indicator that corresponds to the BTIC
entry for the subroutine return instruction, that the BTIC entry
for the subroutine return instruction is valid.

10. The method of claim 8, wherein consuming the BTIC
entry eliminates one or more pipeline bubbles associated with
the subroutine return instruction.

11. The method of claim 10, wherein consuming the BTIC
entry comprises:

providing the next instruction fetch address from the next
instruction fetch address field in the BTIC entry for the
subroutine return instruction to a fetch stage of the
execution pipeline; and

providing the at least one sequential instruction from the
BTIC entry for the subroutine return instruction to a
subsequent stage of the execution pipeline following the
fetch stage.

12. The method of claim 8, wherein detecting the subrou-
tine return instruction comprises detecting the subroutine
return instruction in a decode stage in the execution pipeline.

13. The method of claim 1, wherein the next instruction
fetch address comprises an address of an instruction imme-
diately following the last one of the at least one sequential
instruction.

14. The method of claim 1, wherein the BTIC entry for the
subroutine return instruction corresponds to a link stack entry
storing a return address of the subroutine call instruction.

15. The method of claim 1, wherein the subroutine call
instruction comprises a branch-and-link (BL) instruction that
is operative to place a return address of the subroutine call
instruction into a link register (LR) and set a program counter
to an instruction address of a subroutine.

16. The method of claim 1, wherein the subroutine return
instruction comprises a branch-to-link (BLR) instruction for
setting a program counter to a return address of the subroutine
call instruction.

17. A pipeline bubble reduction circuit, comprising:

a subroutine call detection circuit configured to detect a

subroutine call instruction in an execution pipeline; and
a branch target instruction cache (BTIC) entry establishing
circuit configured to, in response to the subroutine call
detection circuit detecting the subroutine call instruc-
tion:
write at least one sequential instruction fetched sequen-
tial to the subroutine call instruction as a branch target
instruction in a BTIC entry for a subroutine return
instruction;

calculate a next instruction fetch address; and

write the next instruction fetch address into a next
instruction fetch address field in the BTIC entry for
the subroutine return instruction.

18. The pipeline bubble reduction circuit of claim 17, com-
prising the BTIC entry establishing circuit further configured
to set a validity indicator that corresponds to the BTIC entry
to indicate that the BTIC entry is valid in response to the
subroutine call detection circuit detecting the subroutine call
instruction.

19. The pipeline bubble reduction circuit of claim 17, fur-
ther comprising:

a subroutine return detection circuit configured to detect
the subroutine return instruction in the execution pipe-
line; and

aBTIC consuming circuit configured to consume the BTIC
entry for the subroutine return instruction in response to
the subroutine return detection circuit detecting the sub-
routine return instruction.

10

15

20

25

30

35

40

45

50

55

60

65

18

20. The pipeline bubble reduction circuit of claim 19, com-
prising the subroutine return detection circuit configured to
determine, based on a validity indicator that corresponds to
the BTIC entry for the subroutine return instruction, that the
BTIC entry for the subroutine return instruction is valid.

21. The pipeline bubble reduction circuit of claim 19, com-
prising the BTIC consuming circuit configured to:

provide the next instruction fetch address from the next

instruction fetch address field in the BTIC entry for the
subroutine return instruction to a fetch stage of the
execution pipeline; and

provide the at least one sequential instruction from the

branch target instruction in the BTIC entry for the sub-
routine return instruction to a subsequent stage of the
execution pipeline following the fetch stage.

22. The pipeline bubble reduction circuit of claim 17 inte-
grated into a semiconductor die.

23. The pipeline bubble reduction circuit of claim 17, fur-
ther comprising a device selected from the group consisting
of: a set top box, an entertainment unit, a navigation device, a
communications device, a fixed location data unit, a mobile
location data unit, a mobile phone, a cellular phone, a com-
puter, a portable computer, a desktop computer, a personal
digital assistant (PDA), a monitor, a computer monitor, a
television, a tuner, a radio, a satellite radio, a music player, a
digital music player, a portable music player, a digital video
player, a video player, a digital video disc (DVD) player, and
aportable digital video player, into which the pipeline bubble
reduction circuit is integrated.

24. A non-transitory computer-readable medium having
stored thereon computer-executable instructions to cause a
processor to implement a method of establishing a branch
target instruction cache (BTIC) entry for a subroutine return
instruction in an execution pipeline to reduce an occurrence
of a pipeline bubble, the method comprising:

detecting a subroutine call instruction in an execution pipe-

line; and

in response to detecting the subroutine call instruction,

establishing a BTIC entry for a subroutine return

instruction by:

writing at least one sequential instruction fetched
sequential to the subroutine call instruction as a
branch target instruction in the BTIC entry for the
subroutine return instruction;

calculating a next instruction fetch address; and

writing the next instruction fetch address into a next
instruction fetch address field in the BTIC entry for
the subroutine return instruction.

25. The non-transitory computer-readable medium of
claim 24 having stored thereon the computer-executable
instructions to cause the processor to implement the method
wherein establishing the BTIC entry further comprises set-
ting a validity indicator that corresponds to the BTIC entry to
indicate that the BTIC entry is valid.

26. The non-transitory computer-readable medium of
claim 24 having stored thereon the computer-executable
instructions to cause the processor to implement the method
further comprising:

detecting the subroutine return instruction in the execution

pipeline; and

in response to detecting the subroutine return instruction,

consuming the BTIC entry for the subroutine return
instruction.

27. The non-transitory computer-readable medium of
claim 26 having stored thereon the computer-executable
instructions to cause the processor to implement the method
wherein detecting the subroutine return instruction comprises

US 9,317,293 B2

19

determining, based on a validity indicator that corresponds to
the BTIC entry for the subroutine return instruction, that the
BTIC entry for the subroutine return instruction is valid.

28. The non-transitory computer-readable medium of
claim 26 having stored thereon the computer-executable
instructions to cause the processor to implement the method
wherein consuming the BTIC entry comprises:

providing the next instruction fetch address from the next

instruction fetch address field in the BTIC entry for the
subroutine return instruction to a fetch stage of the
execution pipeline; and

providing the at least one sequential instruction from the

branch target instruction in the BTIC entry for the sub-
routine return instruction to a subsequent stage of the
execution pipeline following the fetch stage.

#* #* #* #* #*

5

10

15

20

